Survival probability and local density of states for one-dimensional Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
The survival probability and the local density of states for one-dimensional Hamiltonian systems
For chaotic systems there is a theory for the decay of the survival probability, and for the parametric dependence of the local density of states. This theory leads to the distinction between ”perturbative” and ”non-perturbative” regimes, and to the observation that semiclassical tools are useful in the latter case. We discuss what is ”left” from this theory in the case of one-dimensional syste...
متن کاملSurvival probability and local density of states for one-dimensional Hamiltonian systems
For chaotic systems there is a theory for the decay of the survival probability, and for the parametric dependence of the local density of states. This theory leads to the distinction between “perturbative” and “non-perturbative” regimes, and to the observation that semiclassical tools are useful in the latter case. We discuss what is “left” from this theory in the case of one-dimensional syste...
متن کاملLocal States in One-Dimensional Symmetrical Quantum Systems
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملOne dimensional stable probability density functions for rational index 0
Fox’s H-function provide a unified and elegant framework to tackle several physical phenomena. We solve the space fractional diffusion equation on the real line equipped with a delta distribution initial condition and identify the corresponding H-function by studying the small x expansion of the solution. The asymptotic expansions near zero and infinity are expressed, for rational values of the...
متن کاملExact results for anomalous transport in one-dimensional hamiltonian systems.
Anomalous transport in one-dimensional translation invariant hamiltonian systems with short range interactions is shown to belong in general to the Kardar-Parisi-Zhang universality class. Exact asymptotic forms for density-density and current-current time correlation functions and their Fourier transforms are given in terms of the Prähofer-Spohn scaling functions, obtained from their exact solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2003
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/36/36/310